Meeting Banner
Abstract #4689

Image reconstruction with subspace-assisted deep learning

Yue Guan1, Yudu Li2,3, Ruihao Liu1, Ziyu Meng1, Yao Li1, Leslie Ying4,5, Yiping P. Du1, and Zhi-Pei Liang2,3
1Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China, 2Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States, 3Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States, 4Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, NY, United States, 5Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY, United States

Synopsis

Deep learning-based image reconstruction methods are often sensitive to changes in data acquisition settings (e.g., sampling pattern and number of encodings). This work proposes a novel subspace-assisted deep learning method to effectively address this problem. The proposed method uses a subspace model to capture the global dependence of image features in the training data and a deep network to learn the mapping from a linear vector space to a nonlinear manifold. Significant improvement in reconstruction accuracy and robustness by the proposed method has been demonstrated using the fastMRI dataset.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords