Meeting Banner
Abstract #4692

Fast and Automatic Rank Determination (ARD) via Deep Learning for Low-rank Calibrationless Reconstruction

Jiahao Hu1,2,3, Zheyuan Yi1,2,3, Yujiao Zhao1,2, Christopher Man1,2, Linfang Xiao1,2, Vick Lau1,2, Shi Su1,2, Ziming Huang1,2, Junhao Zhang1,2, Alex T.L. Leong1,2, Fei Chen3, and Ed X. Wu1,2
1Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China, 2Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China, 3Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, China

Synopsis

Low-rank matrix completion has emerged as a potent reconstruction approach for calibrationless parallel imaging. However, in all existing low-rank reconstruction methods, the rank threshold must be carefully chosen slice by slice in a manual and trial-and-error manner, severely hindering the adoption of low-rank reconstruction in routine clinical applications. To tackle the problem, we proposed a fast and automatic rank determination via deep learning. It directly determines optimal rank from undersampled k-space data by exploiting coil sensitivity and finite image support. Our proposed method enables fast, automatic and robust rank determination for all existing calibrationless reconstruction using low-rank matrix completion.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords