To develop a super-resolution method based on the 3D high-resolution MR vessel wall images for generating high-resolution images from low-resolution, a 3D complex-valued super resolution (CVSR) neural network was proposed, which maintained complex algebraic structure of the original acquired images. CVSR was trained on 20 pairs of data sets and tested on 5 pairs. Ground truth with 0.44 mm were compared with Fourier interpolation method, EDSR with two real-valued channels and CVSR. Evaluations were performed using structural similarity (SSIM), peak signal-to-noise ratio (PSNR), and error map quality metrics. The CVSR achieved the best performance when compared with the other methods.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords