Keywords: Machine Learning/Artificial Intelligence, Machine Learning/Artificial IntelligenceHigh-resolution, multi-contrast magnetic resonance imaging (MRI) protocols are required for accurate clinical diagnoses, but are limited by long scan times. Recovering high-quality, multi-contrast images from low-quality accelerated acquisitions is a promising approach to mitigate this limitation. Prior studies have demonstrated deep-learning for tasks such as contrast synthesis, image super-resolution, and image reconstruction. However, each of these tasks requires different architectures and training paradigms. Motivated by these challenges, we introduce a unified conditional denoising diffusion probabilistic model (DDPM) for inverse MR image recovery. Experiments performed on three image recovery tasks demonstrate that DDPMs achieve superior performance compared to prior state-of-the-art approaches.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords