Keywords: MR Fingerprinting/Synthetic MR, MR Fingerprinting
An accelerated spin- and gradient-echo (SAGE) pulse sequence sensitive to changes in oxygenation has been demonstrated to be suitable for MR vascular fingerprinting (MRvF), potentially enabling quantitative, multiparametric mapping of dynamic vascular physiology. This study aimed to optimize this SAGE sequence and matching algorithms used in MRvF and found that selecting shorter echo times resulted in better signal properties and sensitivity for pattern matching with lower estimation error. This optimization will enable these techniques to be used during dynamic vascular challenges and investigations into multiple, simultaneous functional cerebrovascular biomarkers.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords