Abstract #0682
Using diffusion-relaxation MRI to estimate the inner radius of co-electrospun axon-mimicking fibres
Erick Jorge Canales-Rodríguez1,2, Marco Pizzolato2,3, Feng-Lei Zhou4, Muhamed Barakovic5,6,7, Jean- Philippe Thiran1,8,9, Derek K. K. Jones10, Geoffrey J.M. Parker4,11,12, and Tim B. Dyrby2,3
1Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 2Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Amager & Hvidovre, Copenhagen, Denmark, 3Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens, Lyngby, Denmark, 4Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering , University College London, London, United Kingdom, 5Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland, 6MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, University Hospital Basel and University of Basel, Basel, Switzerland, 7Roche Pharma Research & Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland, 8Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland, 9Centre d’Imagerie Biomédicale (CIBM), EPFL, Lausanne, Switzerland, 10Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom, 11Department of Neuroinflammation, Queen Square Institute of Neurology, University College London, London, United Kingdom, 12Bioxydyn Limited, Manchester, United Kingdom
Synopsis
Keywords: Diffusion/other diffusion imaging techniques, ValidationA new approach for estimating inner axon radii from intra-axonal T2 relaxation times was recently proposed. However, further validations are required before this technique can be used widely. The main aim of this study is to validate this T2-based pore size estimation technique in phantoms comprising co-electrospun hollow axon-mimicking fibres designed to have non-circular cross-sections and different radii distributions. For this purpose, a diffusion-relaxation MRI dataset was acquired with a 7T preclinical scanner, from which the intra-fibre T2 times and pore sizes were estimated. The resulting pore sizes were compared to those measured from Scanning Electron Microscope images.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Click here for more information on becoming a member.