Meeting Banner
Abstract #1889

BayesNetCNN: incorporating uncertainty in neural networks for image-based classification tasks

Matteo Ferrante1, Tommaso Boccato2, Marianna Inglese2, and Nicola Toschi3,4
1Biomedicine and prevention, University of Rome Tor Vergata, Roma, Italy, 2Biomedicine and prevention, University of Rome Tor Vergata, Rome, Italy, 3BioMedicine and prevention, University of Rome Tor Vergata, Rome, Italy, 4Department of Radiology,, Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical school, Boston, MA, USA, Boston, MA, United States

Synopsis

Keywords: Machine Learning/Artificial Intelligence, Alzheimer's DiseaseThe willingness to trust predictions formulated by automatic algorithms is key in a vast number of domains. We propose converting a standard neural network into a Bayesian neural network and estimating the variability of predictions by sampling different networks at inference time. We use a rejection-based approach to increase classification accuracy from 0.86 to 0.95 while retaining 75% of the test set for Alzheimer disease classification from MRI morphometry images. Estimating uncertainty of a prediction and modulating the behavior of the network to a desirable degree of confidence, represents a crucial step in the direction of responsible and trustworthy AI.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords