Meeting Banner
Abstract #2706

Brain Decoding and Reconstruction of concepts of visual stimuli from fMRI through deep diffusion models

Matteo Ferrante1, Tommaso Boccato2, and Nicola Toschi3,4
1Biomedicine and prevention, University of Rome Tor Vergata, Roma, Italy, 2Biomedicine and prevention, University of Rome Tor Vergata, Rome, Italy, 3BioMedicine and prevention, University of Rome Tor Vergata, Rome, Italy, 4Department of Radiology,, Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical school, Boston, MA, USA, Boston, MA, United States

Synopsis

Keywords: Machine Learning/Artificial Intelligence, Neuroscience, brain decoding, fMRIIn vision, the brain is a feature extractor which works from images. We hypothesize that fMRI can mimic the latent space of a classifier, and employ deep diffusion models with BOLD data from the occipital cortex to generate images which are plausible and semantically close to the visual stimuli administered during fMRI. To this end, we mapped BOLD signals onto the latent space of a pretrained classifier and used its gradients to condition a generative model to reconstruct images. The semantic fidelity of our BOLD response to visual stimulus reconstruction model is superior to the state of the art.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords