Keywords: Machine Learning/Artificial Intelligence, Artifacts, Respirator Artifact Simulation
To tackle data scarcity for training a deep-learning algorithm for cardiac MR image quality assessment, we develop a k-space method for simulating respiratory motion artifacts with different levels of severity on artifact-free publicly available cardiac MRI data. The benefit of such simulated data is investigated, demonstrating the usefulness of training a feature extractor with the simulated artifacts for image quality classification. Our proposed method achieved the test accuracy of 0.625 and Cohen's Kappa of 0.473 (n=120 images), ranking third in task one for the CMRxMotion challenge of MICCAI 2022.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords