Meeting Banner
Abstract #3709

U-JET: Preliminary results of a convolutional neural network approach for distortion-free image reconstruction of PROPELLER data

Jörn Huber1, Klaus Eickel1,2, and Matthias Günther1,2,3
1Fraunhofer Institute for Digital Medicine MEVIS, Bremen, Germany, 2mediri GmbH, Heidelberg, Germany, 3Faculty 1 (Physics/Electrical Engineering), University of Bremen, Bremen, Germany

Synopsis

Keywords: Machine Learning/Artificial Intelligence, ArtifactsArterial Spin Labeling has great potential in clinics as a non-invasive alternative to Dynamic Contrast Enhanced imaging. However, motion sensitivity needs to be tackled by readout techniques such as 3D GRASE PROPELLER, which unfortunately shows a high sensitivity to geometric distortion. Analytical separation of motion and distortion effects is computationally demanding and might fail in some situations. To this aim, a U-NET based convolutional neural network approach is demonstrated which might overcome this limitation.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords