Keywords: Machine Learning/Artificial Intelligence, Data Analysis, Image EnhancementDeep learning (DL) based image enhancement of undersampled 3D dual-echo steady-state knee MRI can achieve faster computation times compared to compressed sensing reconstruction. However, it is hard to interpret how DL models work. This introduces the risk of DL-enhanced images containing inaccuracies without the user’s knowledge and thus confounding diagnosis. This work aimed to calculate pixel-wise uncertainty maps for DL-enhanced images by incorporating Monte Carlo Dropout into a 2D UNET to estimate epistemic uncertainty. Analysis showed that the DL-enhanced images achieved good image quality and the spatial uncertainty maps reflected errors, compared to reference images.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords