Meeting Banner
Abstract #3883

Evaluation of deep learning-based reconstruction for qualitative and quantitative DW-MRI in head and neck cancers

Ramesh Paudyal1, Akash Deelip Shah2, Amaresha Shridhar Konar1, Jaemin Shin3, Eve LoCastro1, Nisha Bagchi4, Maggie Fung3, Suchandrima Banerjee5, Nancy Lee6, and Amita Shukla-Dave1,2
1Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States, 2Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States, 3GE Health Care, New York, NY, United States, 4Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States, 5GE Health Care, Menlo Park, CA, United States, 6Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States

Synopsis

Keywords: Machine Learning/Artificial Intelligence, TumorThe head and neck (HN) region have complex anatomical structures that affect the image quality of diffusion-weighted MRI. Therefore deep learning (DL)-based Reconstruction (Recon) for DW-MRI could be a promising method that can help improve image sharpness and signal-to-noise ratio (SNR) without increasing signal averaging. The present study aimed to evaluate the performance of qualitative and quantitative multiple b-value DW-MRI powered by DL-based Recon for tumors in the HN region. The DL-based recon method improved the DW image quality and SNR compared to those without DL recon.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords