Meeting Banner
Abstract #4034

DeepGraspT1: Deep Learning-Enabled GRASP T1 Mapping

Haoyang Pei1,2, Ding Xia1, Fang Liu3, and Li Feng1
1Biomedical Engineering and Imaging Institute and Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States, 2Department of Electrical and Computer Engineering, NYU Tandon School of Engineering, New York, NY, United States, 3Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States

Synopsis

Keywords: Machine Learning/Artificial Intelligence, Machine Learning/Artificial IntelligenceGolden-angle RAdial Sparse Parallel (GRASP) MRI has recently been extended for rapid, accurate and robust T1 mapping (GraspT1) that can be performed during free breathing. However, GraspT1 implements a conventional T1 mapping framework that reconstructs an image series from undersampled dynamic k-space in the first step and then performs pixel-wise parameter fitting in the second step. This leads to a slow and cumbersome pipeline to obtain T1 maps. In this work, we developed deep learning-based GraspT1 (DeepGraspT1), which directly estimates T1 maps from undersampled k-space and enables additional acceleration that outperforms conventional iterative reconstruction.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords