Meeting Banner
Abstract #4189

Enhanced-Deep-Super-Resolution Neural Network on Multiple MR Brain Images

Cristiana Fiscone1, Nico Curti2, Matti Ceccarelli3, David Neil Manners1, Gastone Castellani2, Caterina Tonon1,4, Daniel Remondini5,6, Raffaele Lodi1,4, and Claudia Testa4,5
1Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy, 2Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy, 3Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy, 4Functional and Molecular Neuroimaging Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy, 5Department of Physics and Astronomy, University of Bologna, Bologna, Italy, 6INFN Bologna, Bologna, Italy

Synopsis

Keywords: Machine Learning/Artificial Intelligence, Visualization, Super Resolution, GeneralizationEnhanced Deep Super Resolution (EDSR) is a machine learning model aimed to improve image spatial resolution. It was previously trained with general purpose figures and, in this work, directly tested on different MR images: T1w, T2w and Quantitative Susceptibility Mapping (QSM), a quantitative imaging technique. The studied cohort included 28 healthy subjects. Without needing fine-tuning, EDSR shows excellent ability of generalization over new kind of data, improving imaging visualization and outperforming the traditional bicubic upsampling. In future applications, images of patients will be considered to test EDSR reconstruction when there is pathological tissue.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords