Meeting Banner
Abstract #4192

3D MRI super-resolution using convolutional generative adversarial network with gradient guidance

Wei Xu1, Jing Cheng1, and Dong Liang1
1Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, ShenZhen, China

Synopsis

Keywords: Machine Learning/Artificial Intelligence, BrainThe application of MRI has been limited due to the restriction of imaging time and spatial resolution. Super-resolution is an important strategy in clinics to speed up MR imaging. In this work, we propose a novel GAN-based super-resolution method which incorporates gradient features to improve the recovery of local structures of the super-resolution images. Experiments on 3D MR Vessel Wall imaging demonstrate the superior performance of the proposed method.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords