Meeting Banner
Abstract #4199

Coil2Coil 3D: Improved self-supervised MR image denoising using phased-array coil images based on 3D structure information

Rokgi Hong1, Juhyung Park1, Hayeon Lee2, Hongjun An1, and Jongho Lee1
1Department of Electrical and Computer Engineering, Seoul National University, Seoul, Korea, Republic of, 2School of Electrical Engineering, Korea University, Seoul, Korea, Republic of

Synopsis

Keywords: Machine Learning/Artificial Intelligence, Machine Learning/Artificial Intelligence

A deep-learning-based denoising method by extending Coil2Coil method based on 3D network was proposed. This method utilizes 3D information to conserve more tissue structure details. When tested for the synthetic noise-added images, the quantitative metrics were improved than using 2D network (PSNR: 46.57 ± 2.50 for 3D vs. 45.96 ± 2.47 for 2D). For the real-world noise, the proposed method also demonstrated qualitatively improved denoising than 2D case by conserving the structure details in MR images. Additionally, the quantitative mapping experiment for R2* showed the more accurate mapping results, suggesting improvement of the quantification by 3D denoising.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords