Keywords: Tumors, BrainDeep learning reconstruction (DLR) approach with denoising can improve image quality of magnetic resonance (MR) images. However, its applications on multi-modal glioma imaging have not been assessed.Multi-modal images of 107 glioma patients were evaluated by signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge sharpness, visual assessment, diagnosis accuracy and efficiency. Contrasted with conventionally reconstructed images, the DLR images showed higher tumor/residual tumor SNR, higher tumor to white/gray matter CNR, better results of the visual assessment, and a trend of improved diagnosis efficiency and comparable accuracy. DLR can improve image quality of multi-modal glioma images which should benefit the glioma diagnosis.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords