Meeting Banner
Abstract #4203

Assessment of Multi-modal MR Imaging for Glioma Based on a Deep Learning Reconstruction Approach with the Denoising Method

Jun Sun1, Yiding Guo1, Zhizheng Zhuo1, Siyao Xu1, Min Guo1, Li Chai1, Junjie Li1, Liying Qu1, Minghao Wu1, Juan Wei2, Mingna Li3, Tong Li3, Jinyuan Weng4, Xiaodong Gong5, Yunyun Duan1, Dabiao Zhou1, and Yaou Liu1
1Capital Medical Universtiy, Beijing Tiantan Hospital, Beijing, China, 2MR Research, GE Healthcare, Beijing, China, 3BioMind Inc., Beijing, China, 4Department of Medical Imaging Product, Neusoft, Group Ltd., Shenyang, China, 5Department of Medical Imaging Product, Neusoft, Group Ltd., Beijing, China

Synopsis

Keywords: Tumors, BrainDeep learning reconstruction (DLR) approach with denoising can improve image quality of magnetic resonance (MR) images. However, its applications on multi-modal glioma imaging have not been assessed.Multi-modal images of 107 glioma patients were evaluated by signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), edge sharpness, visual assessment, diagnosis accuracy and efficiency. Contrasted with conventionally reconstructed images, the DLR images showed higher tumor/residual tumor SNR, higher tumor to white/gray matter CNR, better results of the visual assessment, and a trend of improved diagnosis efficiency and comparable accuracy. DLR can improve image quality of multi-modal glioma images which should benefit the glioma diagnosis.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords