Meeting Banner
Abstract #4245

Inductive and capacitive coupling modes of an RF coil to an ultra-High Dielectric Constant (uHDC) disk resonator

Parisa Lotfi1, Soo-Han Soon2, Navid P. Gandji1, Michael Lanagan3, Hannes M. Wiesner2, Xiao-Hong Zhu2, Wei Chen2, and Qing X Yang1
1Center for NMR Research, Departments of Neurosurgery and Radiology, College of Medicine, Pennsylvania State University, Hershey, PA, United States, 2Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States, 3Department of Engineering Science and Mechanics, Pennsylvania State University, State College, PA, United States

Synopsis

Keywords: Non-Array RF Coils, Antennas & Waveguides, High-Field MRI, Coil, Dielectric, coupling, SNRWe investigated capacitive and inductive couplings of an RF coil to an ultra-High Dielectric Constant (uHDC) disk resonator with a given resonance mode of similar frequency using simulation and experiments. Coupling of the RF coil and uHDC resonator can result in splitting the resonance into two modes: a parallel mode via inductive coupling and an anti-parallel mode via capacitive coupling. With the two resonators, the stronger and deeper penetration of the resultant B1 field is observed with parallel mode (in-phase) than anti-parallel mode (out-of-phase), which supports that the parallel mode is preferable for coupling uHDC resonators for MRI applications.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords