Keywords: Machine Learning/Artificial Intelligence, Segmentation, ZTE, Deep learningEvaluation of 3D bone morphology of the glenohumeral joint is necessary for pre-surgical planning. Zero echo time (ZTE) MRI provides excellent bone contrast, and we developed a deep learning model to perform automated segmentation of major bones (i.e., humerus and others) from ZTE to aid evaluation. Axial ZTE images of normal shoulders (n=31) acquired at 3T were annotated for training with a 2D U-Net, and the trained model was validated with testing data (n=10 normal shoulder, n=6 symptomatic). Testing accuracy was around 80 to 90% (Dice score) for either cohort, except for a few failed cases with very low scores.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords