Keywords: Machine Learning/Artificial Intelligence, SegmentationWe proposed and validated Data Adaptive Uncertainty-Guided Spatiotemporal (DAUGS) analysis that leverages the data-driven uncertainty map of the segmentation contours among a pool of trained deep neural networks (DNNs) and automatically selects the segmentation result with the highest level of certainty. Our results suggest that proposed DAUGS and standard DNN-based analysis demonstrated on-par performance on the internal test set which is from the same institution as training set and acquired with FLASH sequence. In contrast, DAUGS analysis considerably outperformed DNN-based analysis on the external test set which was acquired with a bSSFP pulse sequence at a different institution, demonstrating the improved robustness of the proposed method despite limited training data.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords