Meeting Banner
Abstract #4922

Predicting Double Expression Status in Primary Central Nervous System Lymphoma Using Multiparametric MRI Based Machine Learning

Li Guo Liu1, Yue Xin Zhang1, Nan Zhang1, Feng Hua Xiao1, Jing xin Chen1, and Lin Ma1
1Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China

Synopsis

Keywords: Machine Learning/Artificial Intelligence, MultimodalIn this study, we proposed a promising method to distinguish the double expression lymphoma (DEL) from the non-double expression lymphoma (non-DEL) in primary central nervous system lymphoma (PCNSL) by using multiparametric MRI-based machine learning. The results showed that clinical characteristics and MR imaging features had no significant differences in distinguishing DEL from non-DEL . However, radiomics features could differentiate the two status and the best model in this study was SVMlinear with the combined four sequence group (AUCmean = 0.89±0.04). So multiparametric MRI based machine learning is promising in predicting DEL status in PCNSL.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords