Meeting Banner
Abstract #1734

Quantitative Analysis of Clinical Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) to Evaluate Treatment Response in Human Breast Cancer

Yanming Yu1,2, Jun Li1, Quan Jiang3, Shanglian Bao1, Yi Zhong4, Yongquan Ye2, Jiong Zhu5, Yongming Dai6, Ewart Mark Haacke2, Jiani Hu2

1Beijing key lab of medical physics and engineering, Peking University, Beijing, China; 2Department of Radiology, Wayne State University, Detroit, MI, United States; 3Department of Neurology, Henry Ford Health Sciences Center, Detroit, MI, United States; 44. Sino-Dutch Biomedical & Information Engineering, Northeastern University, Shenyang, Liaoning, China; 5Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai; 6Healthcare, Magnetic Resonance Imaging, Siemens Ltd. China, Shenzhen, Guangdong, China


There are several practical limitations in quantitative analysis of clinical DCE-MRI for assessing treatment response, including: 1) difficulty in obtaining an accurate arterial input function (AIF); 2) the long scanning time to accurately estimate baseline T1(0); and 3) often highly variable or unphysical results due to noise effects; 4) long computational time. We develop a method that combines a fixed-T1, the Fuzzy C-Means and the reference region model to overcome the aforementioned limitations in quantitative analysis of clinical DCE-MRI without measuring either an AIF or T1(0), and demonstrate its feasibility to assess neoadjuvant chemotherapy for breast cancer using clinical DCE-MRI.