Meeting Banner
Abstract #2816

Impact of Autocalibration Method on Accelerated Echo-Planar Imaging of the Cervical Spinal Cord at 7 T

Alan C Seifert1,2,3 and Junqian Xu1,2,3,4

1Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States, 2Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States, 3Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States, 4Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States

Respiration-induced B0 fluctuations are significantly greater in the cervical spinal cord than in the brain at 7T, increasing k-space phase inconsistencies and necessitating a separate evaluation of autocalibration scan (ACS) methods for accelerated EPI. We tested four ACS methods (single-shot EPI, segmented EPI, FLEET, and GRE) under three physiological conditions (end-expiration breath-hold, free-breathing, and intentional swallowing). GRE and single-shot EPI ACS methods, which are robust to respiration-induced phase errors between k-space segments, produce images with fewer and less severe artifacts than either FLEET or conventionally segmented EPI ACS methods for accelerated EPI of the cervical spinal cord at 7T.

This abstract and the presentation materials are available to members only; a login is required.

Join Here