Meeting Banner
Abstract #3389

Distortion dominates fibre tracking of the optic chiasm – an evaluation of ultra-high angular resolution compared to low-distortion diffusion MRI on a Compact 3T

Thomas Welton1, Matthew Lyon1, Jerome J Maller1,2, Myung-Ho In3, Ek-Tsoon Tan3, Matt A Bernstein4, Erin M Gray4, Yunhong Shu4, John Huston4, and Stuart M Grieve1,5

1Sydney Translational Imaging Laboratory, Heart Research Institute, University of Sydney, Sydney, Australia, 2GE Healthcare, Richmond, Melbourne, Victoria, Australia, 3GE Global Research, Niskayuna, NY, United States, 4Department of Radiology, Mayo Clinic, Rochester, MN, United States, 5Department of Radiology, Royal Prince Alfred Hospital, Sydney, Australia

We evaluated the impact of angular resolution and spatial distortion on crossing-fibre tracking accuracy at the optic chiasm using diffusion MRI data from a Compact 3T scanner with high-performance gradients. Contralateral tracking via the chiasm was quantified in acquisitions optimised for q-space resolution or low distortion and compared to the known true rate of decussation. We found that, for chiasmal tracking, minimising the effects of geometric distortion may provide better value than maximising spatial or angular resolution beyond 140 directions. An ideal future diffusion MRI protocol will combine these features for more optimal tracking performance.

This abstract and the presentation materials are available to members only; a login is required.

Join Here