Meeting Banner
Abstract #0440

Altered Resting State Functional Connectivity in a Subthalamic Nucleus - Motor Cortex - Cerebellar Network in Parkinsons Disease

Simon Baudrexel1,2, Torsten Witte1, Carola Seifried1, Frederic von Wegner3, Johannes C. Klein3, Helmuth Steinmetz3, Ralf Deichmann2, Rdiger Hilker3

1Department of Neurology, University Hospital, Goethe University Frankfurt , Frankfurt am Main, Germany, Germany; 2Brain Imaging Center, Goethe University Frankfurt, Frankfurt am Main, Germany; 3Department of Neurology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany, Germany


It is well established that dopaminergic depletion as observed in Parkinsons Disease (PD) alters metabolic and electrophysiological functional connectivity (FC) in large scale motor networks. Here we investigated FC of the subthalamic nucleus, a key player in PD-pathophysiology, using resting state fMRI and a common seed-voxel approach. We found significantly increased subthalamic FC to the primary motor cortex (PMC) in PD patients as compared to healthy controls. A subsequent seed-voxel analysis revealed increased FC between the left PMC and the bilateral cerebellum. The physiological and clinical relevance of this finding remains further to be determined.