Meeting Banner
Abstract #0910

Precision and Robustness of Deep Brain Temperature Estimation Using Localised Proton Magnetic Resonance Spectroscopy in Normothermic and Hypothermic Newborn Infants

Alan Bainbridge1, Giles Kendall2, Enrico DeVita3, Cornelia Hagmann2, Andrew Kapetanakis2, Ernest Cady1, Nicola Robertson2

1Medical Physics and Bioengineering, UCL Hospitals NHS Foundation Trust, London, United Kingdom; 2Academic Neonatology, EGA UCL Institute for Womens Health, University College London, London, United Kingdom; 3UCL Hospitals NHS Foundation Trust, Medical Physics and Bioengineering, London, United Kingdom

Therapeutic cerebral hypothermia is an effective and safe treatment for perinatal asphyxial encephalopathy. Precise knowledge of regional brain temperature is needed in order to optimise therapeutic hypothermia. Proton MRS can be used to estimates regional brain temperature. Reliable absolute temperature measurement depends on good calibration data and robust clinical spectrum acquisition. Serial acquisition of subspectra allows both removal of motion-corrupted data and frequency correction of the remaining subspectra to remove effects of static magnetic field decay. The magnetic field decay correction significantly reduced fitted peak linewidths and increased the precision of the measurement.