Meeting Banner
Abstract #0911

Metabolite Nulling to Measure the Macromolecule Baseline for Quantitative 1H Magnetic Resonance Spectroscopy at 7 Tesla

Jacob Penner1,2, Andrew Curtis1,2, Martyn Klassen1, Joseph Gati1, Matthew Smith3, Michael J. Borrie3,4, Robert Bartha1,2

1Centre for Functional and Metabolic Mapping, Robarts Research Institute, London, ON, Canada; 2Medical Biophysics, University of Western Ontario, London, ON, Canada; 3Division of Aging, Rehabilitation, and Geriatric Care, Lawson Health Research Institute, London, ON, Canada; 4Department of Medicine, University of Western Ontario, London, ON, Canada


The purpose of this study was to determine the optimal inversion time to null metabolite signals allowing accurate measurement of the macromolecule baseline for quantitative 1H MR spectroscopy at 7T. Spectra were acquired within a phantom using single-voxel localization by adiabatic selective refocusing (LASER). The TI values that would result in complete suppression of NAA and Cr were found to be 0.47 seconds and 1.27 seconds, respectively. Furthermore, T1 values were found to be 1.28 seconds for NAA and 2.45 seconds for Cr. Future work will extend this method to determine the optimal TI values for in-vivo metabolite suppression.

Keywords