Meeting Banner
Abstract #1015

Exploring Multi-Shot Non-CPMG for Hyperpolarized 13C Metabolic MR Spectroscopic Imaging

Yi-Fen Yen1, Patrick Le Roux2, Dirk Mayer3,4, Atsushi Takahashi1, James Tropp1, Dan Spielman3, Adolf Pfefferbaum4,5, Ralph Hurd1

1Global Applied Science Laboratory, GE Healthcare, Menlo Park, CA, United States; 2Global Applied Science Laboratory, GE Healthcare, France; 3Radiology, Stanford University, Stanford, CA, United States; 4Neuroscience Program, SRI International, Menlo Park, CA, United States; 5Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States


We explored the feasibility of a multi-shot non-CPMG sequence for hyperpolarized 13C metabolic imaging. The sequence is designed to stabilize the longitudinal magnetization while keeping the transverse magnetization refocused, permitting echo-train readouts following multiple low-flip-angle excitations. Thus, acquisition strategies can be developed to take advantage of the long T1 and T2 relaxation times of hyperpolarized 13C metabolites. We demonstrate two of the potential applications, 2D T2 mapping and 3D MR spectroscopic imaging, on 13C phantoms and animals with hyperpolarized 13C-pyruvate injections.