Meeting Banner
Abstract #1019

Dynamic and High-Resolution Metabolic Imaging of the Rat Brain In Vivo Using Hyperpolarized [1-13C]-Pyruvate

Dirk Mayer1,2, Yi-Fen Yen3, Atsushi Takahashi3, Sonal Josan1,2, James Tropp3, Adolf Pfefferbaum1,4, Ralph E. Hurd3, Daniel M. Spielman2

1Neuroscience Program, SRI International, Menlo Park, CA, United States; 2Radiology, Stanford University, Stanford, CA, United States; 3GE Healthcare, Menlo Park, CA; 4Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States


Time-resolved spiral chemical shift imaging was applied to investigate the uptake dynamics in the anesthetized rat brain after injection of hyperpolarized [1-13C]-pyruvate. Additionally, metabolic imaging at high spatial resolution was performed to better characterize the spatial origin of the metabolite signals. Higher lactate (Lac) and bicarbonate (Bic) signals were found in cortical regions of the brain. This could be due to higher flux of Pyr through the blood-brain barrier, faster substrate-to-product conversion, or both. Metabolite time courses from a region-of-interest in the cortex suggest slower production of Bic compared to Lac.

Keywords