Meeting Banner
Abstract #1556

Correlation Between Dopamine Synthesis and Cell-Level Structure in Human Striate Body Using Diffusion Tensor Imaging and Positron Emission Tomography with L-[β- 11C]DOPA

Hiroshi Kawaguchi1, Takayuki Obata1, Harumasa Takano2, Miho Ota2, Yoshihide Akine2, Hiroshi Ito2, Hiroo Ikehira1, Iwao Kanno1, Tetsuya Suhara2

1Department of Biophysics, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan; 2Department of Molecular Neuroimaging, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan


Positron emission tomography with L-[β- 11C]DOPA and diffusion tensor imaging were measured on the same group of volunteers to assess the relationship between dopamine synthesis and cell-level structure in the striate body. There was a negative correlation between dopamine synthesis ratio and mean diffusivity in the left striate body, which indicates that the more water motion is restricted, the more dopamine is synthesized in the left striate body. Assuming that water motion is related to celluarity, the result suggests dopamine synthesis may depend on the density of dopaminergic neurons.