Meeting Banner
Abstract #3633

Studying Indirect Ca2+ Alterations Following Myocardial Infarction in a Murine Model Using T1-Mapping Manganese-Enhanced MRI

Benjamin Waghorn1,2, Jimei Liu1, Nathan Yanasak1, Tom C.-C. Hu1,2

1Department of Radiology, Medical College of Georgia, Augusta, GA, United States; 2Nuclear and Radiological Engineering and Medical Physics Programs, Georgia Institute of Technology, Atlanta, GA, United States

Intracellular calcium (Ca2+) overloading that occurs during myocardial ischemia-reperfusion is known to exacerbate injuries. This study demonstrates the use of cardiac T1-mapping manganese-enhanced MRI for identifying and quantifying regional differences in tissue Mn2+, and therfore inferred Ca2+, handling that occur after a myocardial infarction (MI) in the murine model. Regional alterations in Mn2+ efflux were detected, suggesting changes in NCX activity and altered Mn2+ content in ischemic tissue, consistent with changes in Ca2+ handling post-MI. This technique could potentially be developed to provide and indirect in vivo assessment of Ca2+ handling alterations.