Giorgio
  De Nunzio1,2, Antonella Castellano3,4, Gabriella
  Pastore, 1,2, Marina Donativi2, Giuseppe Scotti3,
  Lorenzo Bello5, Andrea Falini6
1INFN (National Institute of Nuclear
  Physics), Lecce, Italy; 2Department of Materials Science,
  University of Salento, Lecce, Italy; 3Neuroradiology Unit and
  CERMAC, Scientific Institute and University Vita-Salute San Raffaele, Milan,
  Italy; 4Institute of Radiological Sciences, University of Milano,
  Milan, Italy; 5Neurosurgery, Department of Neurological Sciences,
  University of Milano, Milan, Italy; 6Neuroradiology Unit and
  CERMAC, , Scientific Institute and University Vita-Salute San Raffaele,
  Milan, Italy
This
  work illustrates the development and validation of a semi-automated
  Computer-Assisted Detection technique (CAD) for the recognition of cerebral
  glioma in Diffusion Tensor MR images (DTI-MR). The described system adheres
  to the classic scheme of a CAD software tool, with a data preprocessing step
  followed by feature calculation and supervised tissue classification. The
  chosen discriminating features come from 3D statistical Texture Analysis.
  Segmentation results are also correlated with histopathological findings from
  specimens obtained from image-guided tumor biopsies.
Keywords