Meeting Banner
Abstract #3396

Undersampled High-frequency Diffusion Signal Recovery Using Model-free Multi-scale Dictionary Learning

Enhao Gong 1 , Qiyuan Tian 1 , John M Pauly 1 , and Jennifer A McNab 2

1 Electrical Engineering, STANFORD UNIVERSITY, Stanford, California, United States, 2 Radiology, STANFORD UNIVERSITY, Stanford, California, United States

Low Signal-to-Noise Ratio (SNR), especially at high b-values, is a critical problem for Diffusion MRI (dMRI). Methods with different signal models may fail to reconstruct under-sampled data from noisy measurement. Diffusion MRI signal contains redundancy as a multi-dimensional signal in both k-space and q-space. Here we proposed a novel approach to recover signal without explicitly enforcing any physical signal model. The method is model-free but learns the multi-dimensional redundancy, including the redundancy between neighborhood voxels, different directions and low\high b-values, from training samples. A Dictionary Learning approach is used to recover under-sampled signals in q-space. Quantitative results demonstrate the method can more accurately predict high b-value signal (>3000s/mm2) from low b-value signal. Also it produces more accurate physiological metrics such as Generalized Fractional Anisotropy (GFA) and Orientation Distribution Function (ODF) that potentially help to resolve intra-voxel crossing fibers.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords