Meeting Banner
Abstract #0001

DWI^2: exploring the MRI-phase for imaging diffusion

Ralph Sinkus1, Simon Auguste Lambert1, Lucas Hadjilucas1, Shaihan Malik2, Anirban Biswas1, Francesco Padormo2, Jack Lee1, and Joseph V Hajnal2

1Imaging Sciences & Biomedical Engineering Division Kings College, King's College London, London, United Kingdom, 2Centre for the Developing Brain & Department Biomedical Engineering, King's College London, London, United Kingdom

Classical DWI methods extract information about microstructural tissue complexity from the signal decrease of the MR-magnitude as a function of b-value. Utilization of linear gradients for motion encoding prevents theoretically the use of the MR-phase. Rather, the diffusion information is encoded in the MR-magnitude via global spin dephasing due to Brownian motion with zero net phase shift. This dogma is overturned when considering quadratic gradient fields in space. We demonstrate in theory, experiment, and simulation that the diffusion process leads to a net phase shift with minimal loss in signal magnitude when imaging at the minimum of the quadratic gradient.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords