Meeting Banner
Abstract #0010

Improved tractography by modelling sub-voxel fibre patterns using asymmetric fibre orientation distributions

Matteo Bastiani1, Michiel Cottaar1, Krikor Dikranian2, Aurobrata Ghosh3, Hui Zhang3, Daniel C. Alexander3, Timothy Behrens1, Saad Jbabdi1, and Stamatios N. Sotiropoulos1

1FMRIB Centre, University of Oxford, Oxford, United Kingdom, 2Department of Anatomy & Neurobiology, Washington University, St. Louis, MO, United States, 3Department of Computer Science & Centre for Medical Image Computing, University College London, London, United Kingdom

Fiber bundles can cross or kiss, bend or fan within a single diffusion MRI (dMRI) voxel. Given the limited dMRI resolution and the inherent central symmetry in the measurements, these sub-voxel patterns cannot be distinguished by only using the voxel-wise signal. These asymmetric fibre patterns can be distinguished once information from neighbouring voxels is pooled together. We propose a direct estimation of asymmetric fiber orientation distributions (aFODs) based on neighbourhood-wise constrained spherical deconvolution that is capable of inferring sub-voxel patterns. We also propose a tractography algorithm based on the estimated aFODs and we assess performance using real histological fibre patterns.

This abstract and the presentation materials are available to members only; a login is required.

Join Here