Meeting Banner
Abstract #0015

Denoising Diffusion-Weighted Images Using x-q Space Non-Local Means

Geng Chen1,2, Yafeng Wu1, Dinggang Shen2, and Pew-Thian Yap2

1Data Processing Center, Northwestern Polytechnical University, Xi'an, China, People's Republic of, 2Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States

In this abstract, we show that improved denoising performance can be attained by extending the non-local means (NLM) algorithm beyond the x-space (i.e., the spatial space) to include the q-space (i.e., the wave-vector space). The advantage afforded by this extension is twofold: (1) Non-local information can now be harnessed not only across space, but also across measurements in q-space; (2) In white matter regions with high curvature, q-space neighborhood matching corrects for such non-linearity so that information from structures oriented in different directions can be used more effectively for denoising without introducing artifacts.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords