Meeting Banner
Abstract #0414

The Physiological Noise Contribution to Temporal Signal-to-Noise Increases with Decreasing Resolution and Acceleration in Quantitative CMR

Terrence Jao1 and Krishna Nayak2

1Biomedical Engineering, University of Southern California, Los Angeles, CA, United States, 2Electrical Engineering, Los Angeles, CA, United States

Advances in MR hardware, pulse sequences, and calibration have made quantitative CMR a reality. Quantitative maps (e.g. T1, T2, ECV) are formed from multiple images, which make them susceptible to errors caused by signal fluctuations from cardiac or respiratory motion, termed physiological noise. Reproducibility of quantitative CMR maps is critical for future clinical adoption and depends on the ratio of signal amplitude to physiological noise, termed temporal SNR. In this study, we measure temporal SNR in bSSFP quantitative CMR to characterize physiological noise for a range of image resolutions, acceleration factors, and post inversion delays.

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords