Meeting Banner
Abstract #1404

Quantitative MR relaxometry reveals subcortical T1 differences in very preterm children and adolescents

Ruth L O'Gorman1, Flavia Wehrle2, Tobias C Wood3, Andreas Buchmann4, Beatrice Latal4, Reto Huber4, Sean Deoni5, Gareth J Barker3, and Cornelia Hagmann2

1Center for MR Research, University Children's Hospital, Zurich, Switzerland, 2Neonatology, University Hospital, Zurich, Switzerland, 3Institute of Psychiatry, King's College London, London, United Kingdom, 4Developmental Pediatrics, University Children's Hospital, Zurich, Switzerland, 5University of Colorado, Denver, CO, United States

Very preterm infants are at an increased risk of neurodevelopmental impairment later in life. This study investigates cerebral microstructural differences in 31 very preterm children and adolescents relative to their term-born peers, using quantitative MR relaxometry. The very preterm group showed significantly increased T1 in the caudate and thalamus and decreased T1 in insula and amygdala/hippocampus, but no significant differences in caudate, thalamus, or total brain volume. These results highlight the vulnerability of basal ganglia, thalamic and cortical structures to neonatal brain injury and underscore the role that quantitative relaxometry may play in evaluating microstructural changes associated with prematurity.

This abstract and the presentation materials are available to members only; a login is required.

Join Here