Meeting Banner
Abstract #1749

Insights in dose dependent effects of Isoflurane by analyzing static and dynamic functional connectivity in mice

Qasim Bukhari1, Aileen Schröter1, and Markus Rudin1,2

1Department of Information Technology and Electrical Engineering, Institute of Biomedical Engineering, ETH and University of Zürich, Zürich, Switzerland, 2Institute of Pharmacology and Taxicology, University of Zürich, Zürich, Switzerland

The neurophysiological effects of anesthetics on brain functional networks are not completely understood. In this work we investigated the resting state functional brain networks under different doses of isoflurane in mice. We used static and dynamic functional connectivity (dFC) analysis to get insights in dose dependent effects of isoflurane. The results from dFC analysis show that spatial segregation across brain functional networks is lost with the increasing dose of anesthesia thus it may be indicative of a deep anesthetic state. Static network analysis using dual regression revealed loss of functional connectivity between the bilateral regions, that is also supported with further results showing decrease in functional correlations with increased dose of isoflurane.

This abstract and the presentation materials are available to members only; a login is required.

Join Here