Meeting Banner
Abstract #1949

Assessing the viscoelastic properties of abdominal tumour models in vivo using MRE

Jin Li1, Lisa Asher1, Filipa Lopes2, Craig Cummings1, Alexander Koers2,3, Laura S. Danielson2,3, Louis Chesler2,3, Caroline J. Springer2, Jeffrey C. Bamber1, Ralph Sinkus4, Yann Jamin1, and Simon P. Robinson1

1Division of Radiotherapy & Imaging, The Institute of Cancer Research, London, United Kingdom, 2Division of Cancer Therapeutics, The Institute of Cancer Research, London, United Kingdom, 3Division of Clinical Studies, The Institute of Cancer Research, London, United Kingdom, 4Division of Imaging Sciences and Biomedical Engineering, King’s College London, King’s Health Partners, St. Thomas’ Hospital, London, United Kingdom

MRE was applied to assess the viscoelastic properties of orthotopic pancreatic ductal adenocarcinoma (PDAC) xenografts, and tumours arising in a transgenic mouse model of MYCN-amplified neuroblastoma, within the mouse abdomen. The stromal-rich PDAC tumours were quantified with markedly elevated elasticity (Gd) and viscosity (Gl), whilst the pathologically diverse neuroblastomas exhibit more heterogeneity in their biomechanical properties and were relatively soft. MRE can non-invasively assess the viscoelastic properties of deep-seated tumours arising within the abdomen of mice in vivo.

This abstract and the presentation materials are available to members only; a login is required.

Join Here