Meeting Banner
Abstract #1994

The effect of axon shape and myelination on diffusion signals in a realistic Monte Carlo simulation environment

Michiel Kleinnijenhuis1, Jeroen Mollink1, Errin E Johnson2, Vitaly L Galinsky3, Lawrence R Frank3, Saad Jbabdi1, and Karla L Miller1

1Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom, 2Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom, 3Center for Scientific Computation in Imaging, University of California San Diego, La Jolla, CA, United States

The cylindrical models often used in Monte Carlo diffusion simulations do not resemble the shape of axons very well. In this work, a more realistic substrate derived from electron microscopy data is used to investigate the influence of axon shape and myelination on the diffusion signal. In the DifSim simulation environment, diffusion signals from EM-derived substrates are compared to those from cylindrical substrates matched for volume fraction. Furthermore, the effect of removing the impermeable myelin sheath from the substrate is assessed.

This abstract and the presentation materials are available to members only; a login is required.

Join Here