Meeting Banner
Abstract #2310

In-vivo quantification of focal vessel wall changes following vascular injury in a murine model of atherosclerosis

Begona Lavin Plaza1, Alkystis Phinikaridou1, Marcelo Andia2, Silvia Lorrio Gonzalez1, and Rene Botnar1

1Imaging Sciences and Biomedical Engineering, King's College London, London, United Kingdom, 2Pontificia Universidad Catolica de Chile, Santiago de Chile, Chile

Despite the beneficial effect of percutaneous transluminal coronary angioplasty and stent implantation, negative vascular remodeling remains as one of the most important complications of interventional cardiology. These procedures may damage the vessel wall, particularly the endothelium, leading to a dysfunctional state characterized by impaired vasodilation, increased leukocyte adhesion and permeability that constitute the initial steps of atherosclerosis. The arterial tree can be divided in either “athero-susceptible” areas, e.g. arterial branches and curvatures, where blood flow is turbulent and shear stress is multidirectional or “athero-resistant” areas, e.g. abdominal aorta, where blood flow is laminar and shear stress is low. In this study, we investigated (1) whether an “atherosclerotic-resistant” segment of the vascular tree, like the aorta, can be switched into an “atherosclerotic-susceptible” area following endothelial injury and (2) whether such a switch in vessel wall remodeling is associated with changes in vascular permeability that can be assessed in-vivo using the albumin binding MR contrast agent, gadofosveset.

This abstract and the presentation materials are available to members only; a login is required.

Join Here