Meeting Banner
Abstract #2620

Accelerated MR Elastography for Quantitative Measurement of Myocardial Stiffness

Rizwan Ahmad1, Samuel Schroeder2, Richard D White3, and Arunark Kolipaka3

1Electrical and Computer Engineering, The Ohio State University, Columbus, OH, United States, 2Mechanical Engineering, The Ohio State University, Columbus, OH, United States, 3Radiology, The Ohio State University, Columbus, OH, United States

Alterations in myocardial stiffness have been linked to wide-ranging cardiovascular conditions. Magnetic resonance elastography (MRE) is a noninvasive, quantitative technique to estimate stiffness of soft tissue.1 Long scan times, however, limit the clinical utility of MRE, especially for cardiac imaging. We propose a data processing technique that not only exploits sparsity in the MRE images but also imposes a constant magnitude constraint to achieve accurate stiffness values from highly undersampled data. The method is validated using a physical phantom of known stiffness value and is then applied to a healthy volunteer to assess myocardial stiffness.

This abstract and the presentation materials are available to members only; a login is required.

Join Here