Meeting Banner
Abstract #2743

Automated Breast MRI Segmentation Method for Background Parenchymal Enhancement

Vignesh A Arasu1, Roy Harnish1, Cody McHargue1, Wen Li1, Lisa J Wilmes1, David Newitt1, Ella Jones1, Laura J Esserman2, Bonnie N Joe1, and Nola M Hylton1

1Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States, 2Surgery, University of California, San Francisco, San Francisco, CA, United States

Automated measurements of whole breast segmentation are becoming an essential process to the development of quantitative and reproducible imaging biomarkers. We have developed a method for automated whole breast tissue segmentation and assess its performance using a test dataset, and found approximately 75% of cases had satisfactory segmentation requiring none to minimal manual modification. The current method can likely provide accurate assessment of mean background parenchymal enhancement, but further refinement of breast-chest wall boundary identification is required for other measurements (e.g. breast density).

How to access this content:

For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.

After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.

After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.

Click here for more information on becoming a member.

Keywords