Redundant sparse representations can significantly improve the MRI image reconstruction with sparsity constraint. An appropriate sparse model is very important to improve image quality even with the same sparsifying transforms and undersampled data. We propose a new fast, stable, compatible and simple iterative thresholding algorithm to solve the analysis sparse models that can obviously improve the image reconstruction for tight-frame-based sparsifying transform in compressed sensing MRI. We theoretically prove the convergence of the proposed projected fast iterative soft-thresholding algorithm (pFISTA). Numerical results show that pFISTA achieves better reconstruction than state-of-art FISTA for synthesis sparse model and more stable and compatible than the state-of-art SFISTA.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords