Meeting Banner
Abstract #4418

Drum Training induces MR visible changes in the Cerebellum and Cortex

Muriel M.K. Bruchhage1, Ali Amad1, Stephen B. Draper2, Jade Seidman1, Flavio Dell'Acqua3, Luis Lacerda3, Pedro Luque Laguna3, Ruth G. Lowry4, Andrew Robertson5, Marcus S. Smith4, and Steven C.R. Williams1

1Department of Neuroimaging, King's College London, The Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom, 2School of Sport and Exercise, University of Gloucestershire, Chichester, United Kingdom, 3NatBrainLab, Department of Neuroimaging, King's College London, The Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom, 4Department of Sport and Exercise, University of Chichester, Chichester, United Kingdom, 5Centre for Digital Music, School of Electronic Engineering and Computer Science, Queen Mary University, London, United Kingdom

Cerebellar networks show long-term plasticity and motor training has been shown to change cerebellar microstructure and cortical thickness. We used a combination of neuroimaging measures to visualise plastic changes in drumming - a demanding multilimb training method: cerebellar lobular volume and shape analysis, cortical thickness and diffusion tensor imaging. Drum training reorganises and reshapes the posterior cerebellum, expanding to connected parietal and prefrontal cortical structures through the inferior cerebellar white matter pathway. Thus, it may offer a novel method for cerebellar and cortical plasticity, relevant as an intervention method for psychiatric disorders connected to cerebellar dysfunction, including autism spectrum disorder.

This abstract and the presentation materials are available to members only; a login is required.

Join Here