Meeting Banner
Abstract #0036

Quantifying the Influence of Respiration and Cardiac Pulsations on the Cerebrospinal Fluid Dynamics using Real-Time Phase-Contrast MRI

Selda Yildiz1, Suraj Thyagaraj2, Ning Jin3, Xiadong Zhong4, Soroush Heidari Pahlavian2, Bryn Martin5, Francis Loth2, John Oshinski6, and Karim G. Sabra1

1Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States, 2Department of Mechanical Engineering, Conquer Chiari Research Center, The University of Akron, Akron, OH, United States, 3MR R&D Collaborations, Siemens Healthcare, Columbus, OH, United States, 4MR R&D Collaborations, Siemens Healthcare, Atlanta, GA, United States, 5Department of Biological Engineering, The University of Idaho, Moscow, ID, United States, 6Department of Radiology & Imaging Sciences and Biomedical Engineering, Emory University, Atlanta, GA, United States

Cerebrospinal fluid (CSF) flow undergoes periodic pulsatile motion driven by cardiac and the respiratory forces. Invasive studies using spinal taps as well as non-invasive studies using phase contrast MRI (PCMRI) sequences have well documented the cardiac-driven CSF flow. PCMRI, however, often uses a conventional cine-phase contrast technique gated to the cardiac cycle, and thus cannot measure the effects of respiration or other non-cardiac transient events such as coughing. Examining these effects requires the ability to perform real-time MRI measurements of continuous CSF flow along the spine and cranial cavity, and determine accurate instantaneous CSF flow velocity values.

This abstract and the presentation materials are available to members only; a login is required.

Join Here