Meeting Banner
Abstract #0115

Development of a Noninvasive Beta Cell Functional Assay Using a Novel Zinc-Sensitive MRI Contrast Agent in Non-Human Primates

Catherine D. G. Hines1, Veronica Clavijo-Jordan2,3, Liza T Gantert1, Stacey Conarello4, Christian Preihs2,5, Sarah Chirayil2, Rachel Ortiga4, Shu-An Lin1, Michael Klimas6, A. Dean Sherry2,3,5,7, and Jeff Evelhoch6

1Translational Imaging Biomarkers, Merck Research Laboratories, West Point, PA, United States, 2Advanced Imaging Research Center, The University of Texas Southwestern Medical Center, Dallas, TX, United States, 3Radiology, The University of Texas Southwestern Medical Center, Dallas, TX, United States, 4Pharmacology, Merck Research Laboratories, West Point, PA, United States, 5VitalQuan, LLC, Dallas, TX, United States, 6Translational Biomarkers, Merck Research Laboratories, West Point, PA, United States, 7Chemistry, The University of Texas at Dallas, Richardson, United States

Pancreatic beta cells secrete insulin to maintain normal blood glucose levels, and the integrity and function of pancreatic beta cells have been found to be compromised in Type-1 and Type-2 diabetes. Therefore, non-invasive beta cell function measurements may provide valuable information for improving diabetes diagnostics and disease management. Currently available diabetes assays lack functional information and spatial identification of properly functioning beta cells. In this work, we introduce a new assay to assess the function and identify functional beta cells in vivo in the non-human primate pancreas non-invasively with MRI using a Gd-based zinc sensor as contrast agent.

This abstract and the presentation materials are available to members only; a login is required.

Join Here