Diffusion MRI tractography produces massive sets of streamlines that need to be clustered into anatomically meaningful bundles. Conventional clustering techniques group streamlines based on their proximity in Euclidean space. We have developed an unsupervised method for clustering tractography streamlines based on their neighboring anatomical structures, rather than their coordinates in Euclidean space. In this work, we show how this approach can be extended to find corresponding clusters across subjects without inter-subject registration. We evaluate the approach on data from the MGH-Harvard-USC Lifespan Human Connectome Project, showing improved correspondence in tract clusters across subjects aged 8-90, without the need for registration.
How to access this content:
For one year after publication, abstracts and videos are only open to registrants of this annual meeting. Registrants should use their existing login information. Non-registrant access can be purchased via the ISMRM E-Library.
After one year, current ISMRM & ISMRT members get free access to both the abstracts and videos. Non-members and non-registrants must purchase access via the ISMRM E-Library.
After two years, the meeting proceedings (abstracts) are opened to the public and require no login information. Videos remain behind password for access by members, registrants and E-Library customers.
Keywords