Meeting Banner
Abstract #1859

Effect of Velocity-compensated Diffusion Preparation for Spinal Cord Diffusion Imaging

Zhe Zhang1, Xiaodong Ma1, Chun Yuan1,2, and Hua Guo1

1Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, People's Republic of China, 2Vascular Imaging Laboratory, Department of Radiology, University of Washington, Seattle, WA, United States

The spinal cord and surrounding cerebrospinal fluid undergo significant cardiac pulsations, which can influence the microscopic motion-sensitive diffusion preparation and cause signal void in the diffusion images. In this work, velocity-compensated diffusion-encoding gradient waveform was implemented in spinal cord diffusion imaging and the images are compared with traditional monopolar preparation and cardiac gating approaches. Results show that with velocity-compensated diffusion preparation, the spinal cord diffusion imaging shows fewer signal voids compared to the traditional monopolar diffusion preparation. Using velocity-compensated diffusion preparation without cardiac triggering can provide a new approach for spinal cord diffusion imaging.

This abstract and the presentation materials are available to members only; a login is required.

Join Here